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In the classical gas any two particles interact with the repulsive potential iff they 
both are situated in the fixed region A. Outside A they move freely. We prove 
that this dynamical system with respect to the Gibbs measure is metrically 
isomorphic to the classical ideal gas. 
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1. I N T R O D U C T I O N  

This paper is the second in the series (the first is Ref. 1) where we prove 
asymptotic completeness for some infinite particle systems. These systems 
are characterized by the following property: some region A c Nv is fixed 
and any two particles interact iff they are both situated in A. Any particle 
outside A moves as in the ideal gas. Such systems were considered earlier 
for the stochastic dynamics/2) and from the point of view of the kinetic 
equations.~3) 

Here we consider the classical gas with the repulsive local potential 

F, zA(xi) zA(xj)  (Ixi- xjl) 
i , j  

Our main result is Theorem 6.1 where we prove that (for any tem- 
perature) it is metrically isomorphic to the classical ideal gas. The methods 
here are quite different from the methods of Ref. 1. 

In Sections 2 and 3 we give the exact definitions of the both dynamical 
systems. In Section 4 we give the main probabilistic and geometrical con- 
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struction. It is reminiscent of Sinai's cluster dynamics(7): during the small 
time interval there are finite groups of particles and these groups do not 
interact with one another. In Section 5 we define direct and inverse M611er 
morphisms on the phase space in the way similar to classical finite particle 
systems. (4-6) The main result is the Theorem 6.1 proven in Section 6. 

We think that results of this paper continue to hold under much more 
general condition on potential in spite of complexities which appear while 
observing. 

2. T H E  C L A S S I C A L  IDEAL G A S  

We only fix notations here (see Ref. 6). 
We define the Bore1 measure 

dp = const exp [ - f i ( v ,  v)] dv dx 

on the phase space R 2v = ~ x ~2 of the classical particle, where (., .) is the 
standard scalar product in ~; ,  dv = dv 1. . .  dv ~, dx = dx 1 ' ' '  dx v. 

The phase space f2 of the classical gas is the set of all locally finite con- 
figurations m c ~2v. f2 is a Polish space with the well-known topology36> 

We define the integer-valued function on f2 

~cB(co) = card(~o m B) 

for any bounded set B c R 2v. The cr algebra 2 in Q is defined to be the 
minimal a algebra such that all functions ~ce(co) are measurable with 
respect to it. We define 

CB.,= {co sf2: tce(~o) = k}, k = 0 ,  1, 2,... 

The Poisson measure # on (g?, X) such that 

#(CB,,) = [p(B)]  k exp[ - -p (B) ] / k t  (2.1) 

is defined in the usual way. We define a algebra Z" as the completion of 2 
with respect to #. 

Time evolution T' of the ideal gas is defined by 

T'co = {S'(x,, v,)} if co = {(x,, v,)} 

and 

S'(x ,  v) = (x + vt, v) 

So (f~, Z ~,/~, T') is the classical dynamical system (ideal gas). 
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3. T H E  LOCAL P E R T U R B A T I O N  OF T H E  C L A S S I C A L  
IDEAL GAS 

Let us consider the infinitely differentiable function ~(r) (repulsive 
potential) on the interval (0, + oo) with the following properties: 

(1) 4~(r) is monotone decreasing 

(2) ~(r) > 0, i.e., @(r) is strictly positive (3.1) 

(3) ~ ( r ) ~  +0o a s r ~  +0 

Then 

grad ~(Ixt) = -r )x 

where ~0(r) is an infinitly differentiable positive function on the interval 
(0, + oo). We shall suppose that there exist positive constants A, C, and d 
such that for r e (0, A) 

qo(r) > Cr d (3.2) 

d will be defined later on. 
Let A be bounded open convex domain in ~); with sufficiently smooth 

boundary. We define the local potential ~bA(co ) as the function 

~A(co) = Y~ zA(xi) zA(xj) e (bx , -  xjl) (3.3) 
i , j  

on (t?, 2 )  where )~A is the indicator of A. 
The local potential q~A corresponds to locally perturbed dynamics T~ 

which acts on any co from some subset t21 (the definition of t21 will be 
given later on). We shall prove that/~(Q~) = 1. We shall also prove that for 
every co el21 there exists an infinite sequence of times q(co)< t 2 ( ~ ) < ' "  
tending to the infinity such that in every ti(co) exactly one particle of the 
configuration T3(~~ hits t?A from the outer region A c and there are no par- 
ticles which hit r from A ~' in any other moment. So T3 has the following 
properties: 

(1) Particles situated outside A move freely. 

(2) If the particle hitting c~A from A c in the moment tt has the velocity v 
until the moment ti, then its velocity changes according to the follow- 
ing rule: let x o be the point of r which the particle hits at the 
moment tz and v ~, the orthogonal component of v with respect to ~?A 
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at the point x 0. Let one have exactly n particles inside A at the 
moment ti with positions x l ,  x2,..., x , .  We denote 

Ux0= ~ ~(IXo-Xil) 
i = 1  

(a) In the case (1/2)(v• Ux0 we shall assume that our par- 
ticle has the orthogonal component of the velocity v •  at 
the moment ti such that 

(1/2){(vZ) 2 -  [v ' ( t i )2]  } = Uxo 

The tangential component of the velocity is not changed. 
(b) If we have (1/2)(v• i.e., the particle moves along 

some tangent line to c~A then it continues its free moving. 
(c) In the case when 0 < ( 1 / 2 ) ( v •  Ux0 one has the case of 

the elastic reflection, i.e., 

v •  = - v  l 

and the tangential component of its velocity is preserved. 
The movement of particles inside A in the interval (ti, &+l) takes 
place in accordance with the Hamilton• dynamics. Moreover if the 
particle hits OA from within (we also suppose that not more than one 
particle can hit 8A from_within at any given moment, see below) then 
the velocity has the jump similar to the case (a) with minor change 
that the jump occurs after the moment of hitting. So the total energy 
of the system is conserved in this case also. 

So T]co is defined for any co and all t until the moment to(co) when 
two or more particles will be situated on OA. We shall prove later that the 
probability of to(co) = oe is equal to 1. 

Def in i t ion  of  Q1 (the domain of definition of T~). ~r~ 1 consists of 
all co such that (1) the projection of T'co onto N~ is locally finite for any t; 
(2) there exists an infinite sequence of moments t*(co)<t~ ' (co)<-- -  
tending to the infinity and such that for any t*(co) 

J T~*(~ c~ 8AI = 1 

and for any t r t*(co), i = 1, 2 .... 

T~A CO Ca O A = ~J  

It is easy to see that f21 is invariant with respect to T] .  
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Propos i t ion  3.1. 

Nf21) = 1 

Proof. If co ~ 0 1 then there exists t = t(co) such that at least two par- 
ticles hit 0A at the moment t. The following cases can occur: 

(a) Two particles hit 0A from A c at the moment t. This case has zero 
# measure due to the known properties of the free dynamics. 

(b) Two particles hit 0A from within. This case also has zero # 
measure due to the properties of Liouville dynamics of finite number of 
particles. 

(c) At least one particle from inside A and at least one particle from 
A " hit c3A at the moment t. Then we proceed as in the case (b) choosing 
some sequence Ak,~ R; and using the properties of Liouville dynamics for 
finite number particles in any A k. Then co belongs to the denumerable 
union of sets of zero measure. 

Let us define the Gibbs measure #~ by 

d#~ = Z -~ exp [- -/?qsA(co ) ] (3.4) a# 

where 

Z = f e e x p [ - - / ~ A ( c o ) ]  d~ | 

Propos i t ion  3.2. 
to each other. So 

# and #~ are absolutely continuous with respect 

Proof. This is quite evident. | 

To prove the T~ invariance of #~ we shall define the smooth 
approximation to the dynamics T] .  Let f (x)  be a C a function which is 
equal to 0 for x <  - 1  and equal to 1 for x > 0 .  It is assumed also to be 
monotone increasing on ( -  1, 0). We define the family of functions 

f ~ ( x ) = f ( ~ ) ,  6 > 0  (3.5) 

If v = 1 and A = (0, a) then we define the smoothed indicator by the for- 
mula 
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If v > 1 then we choose 

O, x < -& 
fa(x), - & < x < 0  

1, 0 < x < a  

f~(a--x), a < x < a + &  
O, a + 6 < x  

{f~ x e A  z (x) = (--r), x ~ A  

where r is the distance r = r(x, OA). 
Then we define the smoothed potential 

~ ( c o )  = Y, Z~(x~) Z~(Xj) ~(Ix , -  xjl) 
i , j  

This potential defines the new perturbed dynamics T~ of the classical gas. 

L e m m a  3.1. For  any to and any coef2~, 

T~oco~T~co if & ~ 0  

in the standard topology (see Section 2). 

ProoL As c o ~ 1  then there exists only a finite number of particles 
(xl,  Vl),..., (xn, vn) which enter A during the time interval [0, to] or are 
situated there at the moment t = 0. So there exists &o > 0 such that any 
dynamics T~, 6 < &0, acts on any other particles as the free dynamics. Let 
0~< tl < t2< ' "  < tk~< to be the sequence of all moments of time when 
exactly one particle hits etA under the dynamics T~. 

We shall prove that 

ir co :rSco 

first for t<t l ,  then for t e  Its, t2] and so on by induction. For  t<tt  this is 
evident. There exists ~ > 0 such that for sufficiently small 5 o > 0 and any 
& < &o only one particle [say, (x 1, v~) and it is situated outside A] can be 
situated in the domain A~\A during the time interval (t~ - e, tl + e), where 
A~ = supp )~a A. As the energy of this particle is bounded uniformly in 5 and 
in te ( t~-e , t~+e)  then the time when this particle spends in A~\A is 
0(5), its velocity is also uniformly bounded and so its x~(t~) under the 
dynamics T~ tends to x~(t~). Moreover tangential component of the 
strength acting on this particle is also uniformly bounded (this follows from 
the choice of)~) .  So the tangential component of the velocity of this par- 
ticle also tends to that which takes place under the dynamics T~. The law 
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of the conservation of energy completes the proof of our assertion for the 
first particle. Then we proceed by induction and using the continuous 
dependence of the dynamics from the initial conditions. 

There exist Gibbs measure #~ corresponding to potentials q~: 

where 

d#3 
@ - Z ;  1 e x p [ -  fl~b~A(~O)] 

Z~ = f~ e x p [ -  flq~(co)] d# 

As all potentials q~ are infinitely differentiable then #6 are invariant with 
respect to T~. 

Proposition 3.3. The Gibbs measure #~ is invariant with respect 
to the dynamics T~. 

Proof. Let f be any continuous, bounded function on (s X). We 
need to prove that 

faf(w) dl~= faf(T~Aw) d~ 

for any t. As f i s  bounded then by the Lebesque theorem for any e > 0 there 
exists c~; such that for any 6 < 6; 

But by the weak convergence of #~ to #e there exists 6~ such that for any 
6<6; '  

f f(o~)d#~-f f(~)d# ~ <~ 

So if 6o = min(6;, 6/;) we get 

f(T~c~) d~ ~ 

<~f f(o)d#~-f f(T}o)dY +3e=3e 

The proposition is proved. | 
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gas. 
Defini t ion.  
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(01, Z, #~, T~) is called the locally perturbed classical 

4. CLUSTER PROPERTIES OF THE PERTURBED D Y N A M I C S  

Lemma 4.1. Let 

d > 2 ( v +  1) (4.1) 

where d is the constant from (3.2). Then for any e > 0  there exists T =  
T(e, d, v, A) such that the following condition holds: let any configuration of 
n particles with different coordinates in A at the moment t be given. Then 
all these particles except at most one with its velocity not exceeding e will 
leave A in the time interval (t, t + T) if no particles enter A during this 
time. We stress that T does not depend on n and the initial configuration of 
particles inside A. 

Proof. We use some ideas of Ref. 4. Let n particles (xi, vi), i EI, 
[I[ = n, be in A at the moment t = 0. 

Let us put xi = xi(t) and 

1 2 
n ( t ) = 2  i . z r u = x i - x j =  - ~ i  

Then 

/~(t)= ~ i~rij 
i,.j~ 1 

i,j  i ,j  

(4.2) 

(we consider only the moments t such that all particles are still in A). As 

2i= - ~ grad ~( Ix i -x j l )  = ~ ~o(Ir,jl)r,j 
j r  j r  

then 

f i j = ~  p(tr,s[) r i , - - ~  p([rsj[) rj~ (4.3) 
s s 
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We can rewrite the first sum in (4.2) using (4.3) 

i:o-r U = 
i , j  ~ 1 z , j  s 

=~'cP([r~ s 

= ~  qo([rol ) ro ~ ( x i -  xs + x s -  xfl 
i , j  s 

= n 2 ~(l~ol) 4 
i , /  

and 

~ = n  ~ ~o(Irejl) r~+~  ~ >  0 (4.4) 
i,.j i , /  

So P(t) is an unbounded convex function. Let us put 

der  1 
R -= ~,~A,,o,sup ~ . .  (x~- Xj)2 = sup P<~n2CI(A) (4.5) 

where CI(A) does not depend on n, 

a= .rieA,i~linf ( n ~  ~o(Ir~jl)r~)>~Cz(A)n 2+(d (4.6) 

where C2(A) also does not depend on n, this estimation will be proved in 
Lemma 4.2. Let C =  max(diam A, 1). Then for P(0)~> C2n 2 it follows from 
(4.4) that 

~6(0) ~> n -2/5(0) + a 

So when n is sufficiently large and d > 2 ( v +  1) we have b(tn)>~0 if tn= 
C Z n  1 - ~, where 0 < c~ < d -  2(v + 1 ). 

Now we must solve the inequality 

P(t)~>R 

with the respect to t. If Tn satisfies this inequality then all n particles can 
not stay in A during the time interval [-0, Tn]. So by (4.1), (4.5), and (4.6) 

Tn <~ tn + ( 2R/a) 1/2 <~ C( A ) n -1 ~ 



142 Malyshev, Nickolaev, and Terlecky 

Using this estimation we have 

T(n)<~ ~ Tk <<. ~ T k < + ~  
k = 2  k = 2  

where T(n) is the first exit time of n - 1 particles from A. Then we can put 

T = ~ Tk + C/e 
k = 2  

I and Lemma 4.1 is proved. 

L e m m a  4.2. 

a > C 2 ( A ) n  2+(d 2)/v 

where C2(A) does not depend on n. 

ProoL We can divide A into �89 domains, each having diameter not 
exceeding Cn j/v. At least n/2 pairs of particles will be in adjacent domains. 
So 

( ~  z a)>Cn n/2 n (J 2)/v a > n inf r,7 

=C2(A)fl 2+(d-z)/v | 

I . e m m a  4.3. Under the condition (4.1) for almost all coe[21 (with 
respect to /~ or #e)  there exists an infinite sequence of moments of time 
t l < t 2 <  .-., t i - .  +oo, i--+ +oo such that 

and so on any particle spends only finite time in A. 

ProoL We shall prove that for any t o > 0  there exist to<S 1 < s 2 <  
tl < +oo such that (1) s2 - S l  > T and there is no particle entering A during 
the time interval [sl ,  sz]; 

(2) in the time interval [s2, t l ]  exactly one particle enters A; 
(3) there are no particles in A at the moment tl. 
It is easy to prove that there exists an infinite number of time intervals 

s~i) < s(2it < t~i) < s~i+ 1) < .. .  such that 

(Ai) *( i ) -~( i ) '~T and no particles enter A in the time interval o 2 0 1  f 

[s?, 
(B~) t~ ~)- s(~ i) > T and exactly one particle enters A in the time inter- 

val Is(2 i), t~i)]. 
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From the properties of the Poisson random field it follows that (Ai) and 
(Bi) are independent events. We want to prove that there exists number i 
such that there are no particles in A at moment t~ o. 

We know from Lemma 4.1 that at the moment s~ o there is at most one 
particle in A. Let one have exactly one particle in A (the case when there is 
no particle is evident). We know that its velocity does not exceed e. Simple 
geometrical consideration shows that the probability that both particles 
leave A before t~ ~ is bounded from below by some 6 > 0 (c5 is independent 
of the coordinate and the velocity of the particle in A at the moment s(j)). 
The proof is concluded then by the Borel-Cantelli lemma. | 

5. M O L L E R  M O R P H I S M S  ON T H E  P H A S E  S P A C E  

Let us define s to be the subset of all c06f21 for which there 
exists an infinite sequence of moments Wl(OJ)< w2(co)< "'" tending to the 
infinity such that 

T~'(~)co ~ A = ~ (5.1) 

for all i. 122 is evidently invariant with respect to T~. 

Lemrna 5.1 : 
#(122) = #| = 1 (5.2) 

and for any co ~ 122 there exist 

7_+co= lira T ~TtAOO (5.3) 
t ~  §  

+ are called the direct M611er morphisms. 

Proof. (5.2) is proved in Lemma 4.3. 
(5.3) follows readily from (5.1) as for any particle (xi, vi)= (co)~co 

there exists t] < +oo such that for any t > tj 

and so for all t > tj 

( TtA(A))i ~-- ( TtA-tJT~(A))i = ( T t - tJT~co) i  

( r ITtA(A))i= ( T tJr3(O )i -~- (~ § (J) )i 

Now we shall define the inverse M611er morphisms 

~_+e)= lim TArT'o) 
t ~ + o o  

(5.4) 

(5.5) 

using the "dual" construction. 
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Let us fix co�9 and consider the dynamics  T'co. Some particles 
(co)i = (xi, v~) �9 co can enter  A. We shall denote  0 ~< ul(co) ~< u2(co) ~< "'" the 
momen t s  of their exit out  of A. We note  that  the particle (co)~ goes out  f rom 
A at the m o m e n t  u~�9 [0, ~] iff the particle (T~co)s of  the configurat ion T~co 
enters A at the m o m e n t  t - u ~ � 9  [0, ~] under  the dynamics  TA'. 

As in Section 4 one can prove  tha t  there exists an infinite number  of  
t ime intervals t~ ~ < s(2 ~ < s~ ~ < t~ ~+ ~) < " "  such that  

(A;) s~i)-s~ ~ > T and there is no uj(co)�9 Is(2 i), s~i)]; 
(B;) s~ t ) -  t~ i) > T and there is exactly one u~(co) �9 [t~ ~ 4 ~  

Let us define s as the subset of all co�9 such that  (A;) and (B~) are 
fulfilled. So quite similar to L e m m a  4.3 and L e m m a  5.1 one can prove  the 
following. 

L e m m a  5.1': 

! ( [ )  t #(s =/~ (s = 1 (5.6) 

and for any co e s there exist the inverse M611er morph i sms  

~7+_co= lira TA'Ttco (5.7) 
t ~  +o9 

In par t icular  for any co �9 ~ ;  there exists the sequence of momen t s  of t ime 
tl < t2 < " ' "  tending to infinity such that  

TA(t-  ti)Ttco (~ A = (5.8) 

for all t>[(i) ,  [ ( i )~  +oe if i ~  oo. 

L e m m a  5.2: 

~ + ~'21~ ~___. ~ 2 

Proof. We have for co = 7 +  co 

A ~ T~ico = A c~ lim T~TA~T'co 
I ~  +oO 

= A c ~  lira TA(' ' i )T~co=A~TA('  t~ 
t ~ -t-  o O  

(5.9) 

Theorem 5.1. There exist direct M611er morph i sms  7_+ on s they 
are invertible on f2 + = Im 7 _+ (f22) and #(f2 _+ ) = #e(~2 + ) = 1. 

Proof. The existence of direct M611er morph i sms  7+_ on s was 
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proved in Lemma 5.1. Now we note that 7_+ is one-to-one as for any coef2 2 
and any i there exists t~ such that 

def  

( ~ ,  co)~ = (?'co), = ( T  'rS, cok 

if t > t~ and 7 ~ is invertible for any t. 
As ? + f+  = 1 on/2~ then the last assertion of the theorem follows from 

Lemmas 5.1' and 5.2. I 

6. M E T R I C  I S O M O R P H I S M  OF THE T W O  D Y N A M I C S  

Here we shall prove that ?+1 which is defined on /2+ is the metric 
isomorphism of dynamical systems (Q, X, ~t, T') and (/2, Z, #~, TS,). 

kemma 6.1. For any co~/22, e3~/2+ and any t 

7+ T~co = T'?+ co (6.1) 

and 

Proof. 
then T~ co E/22, SO 

T~ 7 + ~c5 = 7 +~T'o3 (6.2) 

We shall prove (6.1). As /22 is invariant with respect to T~ 

? + T~ co = lim T -  ST3 T~ co 
s ~  + o c  

= lira T'T ('+'~T~+~lco= T"/+co 
s ~  +oo  

Lemma 6.2. 7+ 1 is the metric isomorphism of the systems 
(/2+, ~, #) and (/22, Z', #~). 

Proof. It follows from Theorem 5.1 that 7 +1 is a one-to-one transfor- 
mation o f /2+  and/22.  It is need to prove that for any A c / 2 +  

#(A) = #e(? + 1A) (6.3) 

Let B c ~ 2 v  be such that there exists e > 0 such that if (x, v) e B then Ivl > e. 
If we shall prove that for any such B 

#(CB,K) = ~(771C, , ,x )  

then (6.3) will follow. 

822/40/1-2-10 
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Let ZA be minimal sub-a-algebra of S which contains all Cz, K such 
that the projection of B onto N; does not intersect A. Then for any A e 27A 

~ b ( A )  = Z  -1 fQ .~A(gO)exp[--flqL~(o))] d/~ 

=~a XA(co) dg z - l  faexp[--fi~A(CO)] @ = # ( A )  

because random variable ;~A and e x p ( -  fiqPA) are independent. For any B, 
which was described above, there exists t ,  such that if (x, v) e B and t > tB 
then x + tv ~ A and so T'Cs, K ~ Z" a. But 

~ r  el, - t  t = . # (T~ T Ca, K) 

if t > tB then 

and 7+1 is the metric isomorphism. | 

T h e o r e m  6.1. The dynamical systems 
(f2, X,/~e, T~) are metrically isomorphic. 

Proof. From Lemmas 5.1 and 5.1' it follows 
/~|163 The transformation 7+ 1 is a metric 
dynamical systems (f2, S,/~, T t) and (f2, S,/z e, T~). 

(f2, 22,/~, T') and 

that #(f2 +) = 1 and 
isomorphism of the 

A C K N O W L E D G M E N T S  
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